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ABSTRACT

The LDPC (Low-Density Parity-Check) decoder must operate soft decisions calculated 
using: LLR (Log-Likelihood Ratio) or APP (A Posteriori Probability) according to 
the decoding algorithm used. The exact calculation of these decisions for high order 
constellations involves complicated operations. In this work, a method to simplify the APP 
calculation is introduced. It is programmed to adapt as perfectly as possible the transmission 
system to the channel type in question. This method leads to simplify the implementation 
of the transmission system. Simulation results show that, under the Gaussian channel, the 
simplified APP algorithm for 16-QAM achieves the same performance that obtained with 
the exact APP, while for 64-QAM we have a small performance degradation. The same 
simplified APP algorithm that used for the Gaussian channel can be applied, with minor 
operations added, for Rayleigh channel, and it shows a small performance loss with respect 
to the exact APP.

Keywords: A Priori Probability (APP), Binary LDPC code, Gaussian channel, Log-Likelihood Ratio (LLR), 

Rayleigh channel, Square-QAM-Gray mapping

INTRODUCTION

Given the increasing number of applications 
require high-speed transmission without 
increasing the bandwidth of the transmission 
channel, this is the reason for the use of 
high order constellations. The Quadrature 
Amplitude Modulation (QAM), is highly 
recommended as a high order constellation. 
However, communication systems using 
QAM require a high signal to noise ratio. 
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To overcome this disadvantage, it is interesting to combine high error correction codes 
such as LDPC codes with QAM.

LDPC codes are linear block codes, can approach the Shannon limit (Shannon, 
1948). They were proposed by Gallager in 1962 (Gallager, 1962 & Gallager, 1963) and 
rediscovered by Mackay in 1995 (MacKay, 1999 & Davey et al., 2002). Their decoding 
is done according to the principle of iterative decoding. One class of algorithms used to 
decode LDPC codes is commonly known message propagation algorithms (Johnson, 2010). 

Message propagation algorithms are also known as iterative decoding algorithms. The 
first practical iterative decoding algorithm is the Sum-Product algorithm (SPA) (Gallager, 
1963), also known as the belief propagation algorithm is an optimal iterative decoding 
algorithm but with a high computational complexity. Several algorithms have been proposed 
to reduce the complexity of the SPA. The messages exchanged in the SPA and its versions 
can be measured by the APP or the LLR depending on the type of algorithm. Therefore, 
the message at the decoder input must be using the same calculation. The calculation of 
the input messages is done to the channel output depends on the considered constellation. 
However, the number of operations performed by the QAM, to do the calculation of soft 
decisions, introduced to the decoder, increases with the constellation order. The calculation 
of soft decisions can be calculated using the LLR or the APP depending on the type of 
considered algorithm.

 Several algorithms have been introduced in order to simplify the exact calculation 
of the LLR. The pragmatic algorithm, introduced in, attempts to simplify the calculation 
assuming that the likelihood values are Gaussian variables (LeGoff et al., 1994; LeGoff, 
2000). The max-log-MAP algorithm is the most popular simplifying the exact algorithm 
(Liu et al., 2015). However, simplifications of LLR are used only for decoders based on 
LLR. While for decoders based on APP, we need to calculate the APP, and the latter is 
complex. 

This work introduces a method to simplify the APP calculation. It is programmed to 
adapt as perfectly as possible the transmission system to the channel type. This method leads 
to simplify the implementation of the transmission system. In this paper, we restrict our 
description of combining binary LDPC code, decoded by FFT-SPA (Barnault et al., 2003 
& Carrasco et al., 2008) that uses APP calculations, with square Gary-QAM constellations, 
over Gaussian and Rayleigh Channels. The rest of the paper is organized as follows: In 
section 2, a system combining a QAM and an LDPC code is presented, In section 3, the 
exact APP computation is given. The simplified APP computation, under Gaussian and 
Rayleigh channels, for square QAM constellations is presented in Section 4. Finally, the 
simulation results and concluding remarks are given in Sections 5 and 6, respectively.
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System Combining a QAM and An LDPC Code

2m-QAM uses a set of 2m signals of duration T transmit m symbols {un,i}, i Є {1, ... , m}. 
From a theoretical view point, the modulation operation at the instant nT is to represent, 
in a two-dimensional space, the 2m signals by a set of 2m points called constellation, and to 
correspond the set of m symbols to each point of the constellation identified by its abscissa 
an and ordinate bn. 

So each set of m binary symbols is associated, at each time nT, to a couple of symbols 
(an, bn). After passing through the transmission channel, the observation relating to the 
couple (an, bn) is represented by a couple (a’n, b’n). The transmitted symbols are better 
follow a Gray mapping, it allows to affirm that there is usually only one erroneous symbol 
(Tan et al., 2014). The simplest diagram of a digital transmission system as part of the 
association of an LDPC code and a 2m-QAM, is given in Figure 1.

Figure 1. Diagram of a digital transmission system

At the reception, we treat couples (a’n, b’n) representative of the couple (an, bn) to extract 

m samples {ûn,i}, i Є {1, ... , m} each representative of a binary symbol un,i associated 

with the same signal during the modulation. Whatever the constellation with 2m states 

used, for each couple (a’n, b’n) received at instant nT, the sample ûn,i is obtained using two 

relationships, LLR(un,i) (Log-Likelihood Ratio) or APP(un,i) (A Posteriori Probability):

, , is calculated as follows (Moon, 2005):

			   (1.a)

 					     (1.b)
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Where Pr{(a’n, b’n) / un,i - w} is the probability that the available couple is (a’n, b’n); 
knowing the binary symbol un,i is equal to w.

LLR(un,i), i Є {1, ... , m}, is calculated as follows (Alam et al., 2009):

					     (2)

Equation (2) is the exact calculation of LLR, it is the optimal calculation that represents 
the log-MAP algorithm (Maximum A Posteriori) (Tosato et al., 2002, Hyun et al., 2005; 
Wang et al., 2011). However, it involves complicated operations. Several algorithms have 
been introduced in order to simplify the exact calculation of the LLR. 

In this work, we propose a method for applying the simplified calculation of LLR 
and adapt them to the LDPC decoder based on the APP, and even to simplify the APP 
calculation. This provided to insert an additional module to make the conversion LLR 
to APP, as shown in figure 2. The simplified algorithm of the APP got on the Gaussian 
channel can be reused efficiently on a Rayleigh channel (Figure 2), this provided insert an 
additional operation to accommodate, each time nT, the channel attenuation an.

In Figure 2, the block of the simplified calculation of the LLR is identical for all 
decoding algorithms, whatever the decoder input: LLR or APP. Only the modulus of the 
conversion of APP to LLR depends on the decoder input. His presence in the figure 2, is 
justified by the need to apply the simplified calculation of the LLR to LDPC decoder based 
on APP. Their presence is not essential in the case of an LDPC decoder based on LLR. 
Indeed, it is easy to change a decoding algorithm based on LLR to an algorithm based on 
APP, keeping unchanged the simplified calculation of LLR. 

Figure 2 shows that the proposed method can simplify the implementation of the 
system. In what follows, we will show that this method simplifies the exact calculation of 
APP. The method will be explained for a QAM with 22p states, p Є N.

Figure 2. Principle of simplified APP calculation
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Exact Calculation of APP

22p-QAM, uses a square constellation, has the particularity to be reduced to two Amplitude 
Modulations with 2P states independently acting on two carriers in phase and quadrature 
(Ghaffar et al., 2010). According to the above property (the case of a square constellation), 
p expressions in phase, obtained from the equation (2) are consequently the following:

, 		  (3.a)

,                  	   	 (3.b)

And p expressions in quadrature, obtained from the equation (2), are the following:

, 	 (4.a)

, 		  (4.b)

For a Gaussian transmission channel, with the noise variance σ2, the p relations in 
phase eventually lead to the following expressions:

,

  								        (5.a)

,  			   (5.b)

Where  are possible values of the symbol an when the symbol un,i to be transmitted 
has the value k (k = 0 or 1).

Similarly, for a Gaussian channel, the p relations in the quadrature path eventually 
lead to the following expressions:

,

, 							       (6.a)

,     		  (6.b)

Where  are possible values of the symbol bn when the symbol un,i to be transmitted 
has the value k (k = 0 or 1).
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Equations (5) and (6), representing the exact calculation of APP, reflects full information 
for all possible QAM symbols. Therefore, it is necessary a large number of calculations 
to calculate the exact APP in the case of a high order constellation such as 16-QAM, 64-
QAM, 256-QAM. Thereafter, we will simplify the calculation, using the proposed method, 
when the channel is Gaussian. Then, we will show that simplified equations obtained on 
the Gaussian channel can be effectively reused on a Rayleigh channel.

Simplified Calculation of App

Gaussian Channel. Following the figure (3), simplification of equations (5) and (6) is 
obtained after the simplified calculation of LLR then converting the LLR to the APP. As 
the transmission channel is Gaussian, and the modulation uses a square constellation, the 
calculation of LLR obtained from equation (2) are well approached, using two algorithms 
max-log-MAP and pragmatic.

Max-log-MAP Algorithm. The Max-log-MAP algorithm, introduced in (Liu et al., 
2015) shows that the p relations in the phase and p relations in the quadrature are given 
respectively by equation (7.a) and equation (7.b):

, 	 (7.a)

,

								       (7.b)

Pragmatic Algorithm. The pragmatic algorithm introduced in (LeGoff et al., 1994) shows 
that the p relations in the phase and p relations in the quadrature multiplied by σ2 / 2, are 
given respectively by equation (8.a) and equation (8.b):

 

 

 					     (8.a)

 
And 
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 				    (8.b)

 

For a good approximation, we multiply equations (8) with a constant factor f = 2 / σ2, 
we get:

 

 

 	   			   (9.a)

 
And 

 

 

 			   (9.b)

 

The derivation of APP from the simplified LLR (Lee et al., 2005), leads to the following 
simplified equations:

, 			   (10.a)

,        			   (10.b)

So it is remarkable that the simplified calculation of the APP, equations (10), are 
less number of calculations that the exact calculation of the APP, equations (5) and (6). 
Illustratively, consider for example the case of 16-QAM (p = 2), the functions relating 
the inputs and outputs, using both algorithms, pragmatic and max-log-MAP, are shown 
in figures 4. In each of Figures 3, there is shown the function whose form is given by 
equations (5) and (6) and the corresponding simplified function, equations (10), this for a 
signal to noise equals to 4 dB. 

For bits uk,3 and uk,4 we have the same results as presented in figure 3.a and figure 3.b 
respectively. In all cases, these curves are used to verify that, despite their simplicity, the 
approximations performed by equations (10) are excellent, and they can therefore be used 
advantageously in place of expressions (5) and (6).



Mostari, L. and Taleb-Ahmed, A.

1758 Pertanika J. Sci. & Technol. 26 (4): 1751 - 1763 (2018)

Figure 3a. Exact and simplified APP corresponding to bit  for a 16-QAM constellation, at Eb/N0 = 
4dB

Figure 3b. Exact and simplified APP corresponding to bit  for a 16-QAM constellation, at Eb/N0 = 
4dB
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Rayleigh Channel.  In this section, it is assumed that the transmission channel is a Rayleigh 
channel. In addition, it is assumed that the attenuation of the channel an’ at time nT, is 
known perfectly by the receiver (Zehevi, 1992). We will show that it is not necessary to 
repeat the whole argument made about the Gaussian channel to get algorithms that allow 
to implement the simplifications made on a Rayleigh channel (LeGoff, 1995). First, recall 
that the channel output at time nT, the information available relative to the couple (an, bn) 
is such that:

 							       (11.a)

 		     					     (11.b)

Where  is a Gaussian noise, centered, with variance σ2 and an variable characterizes 
the attenuation of the transmitted signal. As the variable an at time nT is known, it is possible 
to divide the two samples a’n and b’n available at the output of the channel by an (LeGoff, 
2000). Samples a”n and b”n thus obtained are expressed in the form:

 						      (12.a)

 		                                     		  (12.b)

Where z’n is a Gaussian noise, centered, with variance σ2
n equals to σ2 / a2. Since the 

samples a”n and b”n are modeled by Gaussian variables, it is possible to apply directly on 

the samples a”n and b”n available, simplified algorithms of LLR strictly identical to those 
used when the transmission channel is Gaussian, and this irrespective of the modulation 
used. In order to apply best these results obtained with a modulation to a proposed system 

in this work, so it is necessary to multiply by a2
n the samples u’n,i - LLR (un,i), before the 

conversion (Figure 2).

RESULTS 

In this section, we will show the effect of simplifying calculation of the APP on the 
performance of binary LDPC code of rate equals to 1/2 and a parity check matrix of size 
128 × 256, and a decoding algorithm using the FFT-SPA where the number of iterations 
is four. The transmission chain for which we evaluated the Bit Error Rate (BER) after 
decoding is one that has been shown in Figure 1, for a binary LDPC code, attached to two 
square constellations: 16-QAM and 64-QAM, using Gray mapping, and two transmission 
channels: Gaussian and Rayleigh.
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Figure 4 shows performance comparisons, on a Gaussian channel, between a binary 
LDPC code using the exact calculation of the APP, equations (5) and (6), a binary LDPC 
code using the simplified calculation (equations (10)) by applying the pragmatic algorithm 
(equations (9)) and a binary LDPC code using the simplified calculation (equations (10)) 
by applying the max-log algorithm (equation (7)).

In the figure 4 we can see that the simplified calculation of the APP for 16-QAM,on 
a Gaussian channel, using a max-log-MAP algorithm and a pragmatic algorithm, has 
no effect on the performance of a binary LDPC code. While, with 64-QAM we have a 
few performance degradation when we use a pragmatic algorithm to simplify the APP 
calculation.

In order to study the influence of the simplified calculation on the performance of a 
binary LDPC code on a Rayleigh channel, the same performance comparison of Figure 4 
are performed on a Rayleigh channel, in Figure 5. 

Seen the results on a Rayleigh channel, there is a small performance degradation of a 
binary LDPC code using the pragmatic and max-log-MAP algorithms to simplify the APP. 

Figure 6 presents the same performance comparison of Figures 4 and 5, using 16-
QAM, on a Gaussian and Rayleigh channels, where the number of iterations is six. As 
illustrated in figure 6, the proposed simplified calculations are also good for binary LDPC 
codes with six iterations. 

Figure 4. Performance comparisons, under Gaussian channel, of binary LDPC code decoded by FFT-SPA 
using exact APP and simplified APP algorithms of 16-QAM and 64-QAM constellations
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Figure 5. Performance comparisons, under Rayleigh channel, of binary LDPC code decoded by FFT-SPA 
using exact APP and simplified APP algorithms of 16-QAM and 64-QAM constellations

Figure 6. Performance comparisons, under Gaussian and Rayleigh channels, of binary LDPC code 
decoded by FFT-SPA using exact APP and simplified APP algorithms of 16-QAM with six iterations
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Therefore, the simulation results presented in Figures 4, 5 and 6 show that the binary 
LDPC code using the proposed simplified computations can be used effectively in a system 
with high spectral efficiency, i. e. with high order constellations.

CONCLUSION

In this work, we used the simplified calculation of the LLR to facilitate the calculation of 
the APP for binary LDPC codes. The proposed method for making these simplification, 
puts a system combining a binary LDPC code and a high order constellation simple to 
implement. It is programmed to adapt as perfectly as possible the system to the type of 
channel in question. Also, it ensures an efficient decoding regardless of the channel in type. 
Since LDPC codes are selected as candidate for the 5th generation wireless communications 
(5G), it is interesting to use the proposed simplifications.
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